79 lines
3.2 KiB
Python
79 lines
3.2 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from matplotlib.colors import LinearSegmentedColormap
|
|
|
|
def analyze_paper_breakdown(lengths, voltages, ed_standard_values):
|
|
lengths = np.array(lengths)
|
|
voltages = np.array(voltages)
|
|
ed_real = voltages / lengths
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
|
|
|
|
colors = ['red', 'green', 'purple', 'orange', 'brown', 'cyan', 'magenta', 'olive']
|
|
if len(ed_standard_values) > len(colors):
|
|
import itertools
|
|
colors = list(itertools.islice(itertools.cycle(colors), len(ed_standard_values)))
|
|
|
|
# Feste rote Farbe
|
|
red_color = 'red'
|
|
|
|
ax1.plot(lengths, voltages, label="U (gemessen)", marker='o', linestyle='-', color='blue')
|
|
|
|
for i, ed_standard in enumerate(ed_standard_values):
|
|
u_erwartung = lengths * ed_standard
|
|
ax1.plot(lengths, u_erwartung, label=f"U (Erwartung, {ed_standard} kV/mm)", marker='x', linestyle='--', color=colors[i])
|
|
|
|
if ed_standard == 5:
|
|
deviation = u_erwartung - voltages
|
|
mask = (ed_real >= 4) & (ed_real <= 6)
|
|
for k in np.where(mask)[0]:
|
|
x_vals = lengths[k:k+2]
|
|
if len(x_vals) == 2:
|
|
if deviation[k] > 0:
|
|
ax1.fill_between(x_vals, voltages[k:k+2], u_erwartung[k:k+2], color=red_color, alpha=0.5, zorder=5)
|
|
elif deviation[k] < 0:
|
|
ax1.fill_between(x_vals, u_erwartung[k:k+2], voltages[k:k+2], color=red_color, alpha=0.5, zorder=5)
|
|
#Füllen im unteren Graphen
|
|
ed_5 = np.full_like(lengths, 5) # Erzeugt ein Array mit dem Wert 5
|
|
for k in np.where(mask)[0]:
|
|
x_vals = lengths[k:k+2]
|
|
if len(x_vals) == 2:
|
|
if ed_real[k] > 5:
|
|
ax2.fill_between(x_vals, ed_5[k:k+2], ed_real[k:k+2], color=red_color, alpha=0.5, zorder=5)
|
|
elif ed_real[k] < 5:
|
|
ax2.fill_between(x_vals, ed_real[k:k+2],ed_5[k:k+2], color=red_color, alpha=0.5, zorder=5)
|
|
|
|
|
|
|
|
ax1.set_ylabel("Spannung U [kV]")
|
|
#ax1.set_title("Durchschlageigenschaften in Abhängigkeit von Materialstärke")
|
|
|
|
handles1, labels1 = ax1.get_legend_handles_labels()
|
|
by_label = dict(zip(labels1, handles1))
|
|
ax1.legend(by_label.values(), by_label.keys(), loc='upper left')
|
|
|
|
ax1.grid(True)
|
|
|
|
ax2.plot(lengths, ed_real, label="ED (gemessen)", marker='s', color='blue', linestyle='-')
|
|
for i, ed_standard in enumerate(ed_standard_values):
|
|
ax2.plot(lengths, np.full_like(lengths, ed_standard), label=f"ED (Erwartung, {ed_standard} kV/mm)", linestyle='--', color=colors[i])
|
|
|
|
ax2.set_xlabel("Materialstärke l [mm]")
|
|
ax2.set_ylabel("Durchschlagsfeldstärke E [kV/mm]")
|
|
ax2.legend(loc='lower left')
|
|
ax2.grid(True)
|
|
|
|
fig.tight_layout()
|
|
plt.show()
|
|
return fig
|
|
|
|
# Beispieldaten
|
|
papier_lengths = [2, 3, 4, 5]
|
|
papier_voltages = [11, 15.1, 16.6, 21.6]
|
|
ed_standard_values = [4, 5, 6]
|
|
|
|
# Analyse und Anzeige
|
|
fig = analyze_paper_breakdown(papier_lengths, papier_voltages, ed_standard_values)
|
|
|
|
papier_ed_real = np.array(papier_voltages) / np.array(papier_lengths)
|
|
print(f"Gemessene Durchschlagsfeldstärken (ED-Real): {papier_ed_real} kV/mm") |